Abstract

Mode-I stress intensity factors are estimated for 28 buckled two-dimensional hexagonal materials, including 6 mono-elemental (silicene, indiene, blue phosphorene, arsenene, antimonene and bismuthene) and 22 binary (CS, CSe, CTe, SiO, SiS, SiSe, SiTe, SiGe, GeO, GeS, GeSe, GeTe, SnO, SnS, SnSe, SnTe, SnGe, SnSi, InAs, InSb, GaAs and AlSb) two-dimensional materials. The crack-tip displacement field revealed from linear elastic fracture mechanics is adopted to find the stress intensity factor. Atomic-scale finite element method with Stillinger-Weber potentials is used to simulate the tensile tests. Mode-I stress intensity factors of these 28 two-dimensional materials appear ≤ 0.8 which are very small in comparison with boronitrene and graphene. Most of them exhibit their fracture toughness below 0.5 Our findings are helpful in the design of nano-devices with these two-dimensional materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.