Abstract

Two-dimensional (2D) materials have emerged as a platform for a broad array of future nanoelectronic devices. Here we use first-principles calculations and phonon interface transport modeling to calculate the temperature-dependent thermal boundary conductance (TBC) in single layers of beyond-graphene 2D materials silicene, hBN, boron arsenide (BAs), and blue and black phosphorene (BP) on amorphous SiO2 and crystalline GaN substrates. Our results show that for 2D/3D systems, the room temperature TBC can span a wide range from 7 to 70 MW m−2 K−1 with the lowest being for BP and highest for hBN. We also show that 2D/3D TBC has a strong temperature dependence that can be alleviated by encapsulating the 2D/3D stack. Upon encapsulation with AlO x , the TBC of several beyond-graphene 2D materials can match or exceed reported values for graphene and numerous transition-metal dichalcogendies which are in the range of 15–40 MW m−2 K−1. We also compute the room temperature TBC as a function of van der Waals spring coupling (K a ) where the TBC falls in the range of 50–150 MW m−2 K−1 at coupling strengths of K a = 2–4 N m−1 for silicene, BAs, and blue phosphorene. We further identify group III–V materials with ultra-soft flexural branches as being promising 2D materials for thermal isolation and energy scavenging applications when matched with crystalline substrates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.