Abstract
This work proposes a new formulation for common spatial patterns (CSP), often used as a powerful feature extraction technique in brain-computer interfacing (BCI) and other neurological studies. In this approach, applied to multiple subjects' data and named as hyperCSP, the individual covariance and mutual correlation matrices between multiple simultaneously recorded subjects' electroencephalograms are exploited in the CSP formulation. This method aims at effectively isolating the common motor task between multiple heads and alleviate the effects of other spurious or undesired tasks inherently or intentionally performed by the subjects. This technique can provide a satisfactory classification performance while using small data size and low computational complexity. By using the proposed hyperCSP followed by support vector machines classifier, we obtained a classification accuracy of 81.82% over 8 trials in the presence of strong undesired tasks. We hope that this method could reduce the training error in multi-task BCI scenarios. The recorded valuable motor-related hyperscanning dataset is available for public use to promote the research in this area.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.