Abstract

A Brain Computer Interface (BCI) utilizes signals derived from electroencephalography (EEG) to establish a connection between a person's state of mind and a computer-based signal processing system which interprets the EEG signals. Extracting appropriate features from available EEG signals is essential for good BCI communication and an acceptable level of accuracy. Till now, many different feature extraction techniques have been used. Recently, a new set of features called Complex Band Power (CBP) are introduced. In this study(Townsend et al, 2006), showed that CBP features could result in more accuracy in comparison to traditional band power features and Common Spatial Patterns (CSP) features. In this paper, the resulted accuracy from CBP, CSP and traditional band power features were compared using the data set Bci-Competition2005. The simulation results showed the superiority of CBP features over traditional band power features and also showed that CSP features lead to more accuracy (inverse result in compare of previous work). The results indicated that the success of these feature extraction methods depends strongly on the subject and personal differences such as mental patterns and IQ. Both CSP and CBP are powerful feature extraction methods and it is hard to choose one as more appropriate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.