Abstract

Value at risk (VaR) and expected shortfall (ES) have emerged as standard measures for detecting the market risk of financial assets and play essential roles in investment decisions, external regulations, and risk capital allocation. However, existing VaR estimation approaches fail to accurately reflect downside risks, and the ES estimation technique is quite limited owing to its challenging implementation. This causes financial institutions to overestimate or underestimate investment risk and finally leads to the inefficient allocation of financial resources. The main purpose of this study is to use machine learning to improve the accuracy of VaR estimation and provide an effective tool for ES estimation. Specifically, this study proposes a VaR estimator by combining quantile regression with “Mogrifier” recurrent neural networks to capture the “long memory” and “clustering” properties of financial assets; while for estimating ES, this study directly models the quantile of assets and employs generative adversarial networks to generate future tail risk scenarios. In addition to the typical properties of financial assets, the model design is also consistent with heterogeneous market theory. An empirical application to four major global stock indices shows that our model is superior to other existing models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.