Abstract
The Value at Risk (VaR) is a very important risk measure for practitioners, supervisors and researchers. Many practitioners draw on VaR as a critical instrument in Risk Management and other Actuarial/Financial problems, while supervisors and regulators must deal with VaR due to the Basel Accords and Solvency II, among other reasons. From a theoretical point of view VaR presents some drawbacks overcome by other risk measures such as the Conditional Value at Risk (CVaR). VaR is neither differentiable nor sub-additive because it is neither continuous nor convex. On the contrary, CVaR satisfies all of these properties, and this simplifies many analytical studies if VaR is replaced by CVaR. In this paper several differential equations connecting both VaR and CVaR will be given. They will allow us to address several important issues involving VaR with the help of the CVaR properties. This new methodology seems to be very efficient. In particular, a new VaR Representation Theorem may be found, and optimization problems involving VaR or probabilistic constraints always have an equivalent differentiable optimization problem. Applications in VaR, marginal VaR, CVaR and marginal CVaR estimates will be addressed as well. Illustrative actuarial and financial examples will be likewise presented.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have