Abstract
We derive methods for risk-neutral pricing of multi-asset options, when log-returns jointly follow a multivariate tempered stable distribution. These lead to processes that are more realistic than the better known Brownian motion and stable processes. Further, we introduce the diagonal tempered stable model, which is parsimonious but allows for rich dependence between assets. Here, the number of parameters only grows linearly as the dimension increases, which makes it tractable in higher dimensions and avoids the so-called “curse of dimensionality.” As an illustration, we apply the model to price multi-asset options in two, three, and four dimensions. Detailed goodness-of-fit methods show that our model fits the data very well.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.