Abstract
We assess Value-at-Risk (VaR) and Expected Shortfall (ES) estimates assuming different models for the standardized returns: distributions based on polynomial expansions such as Cornish-Fisher and Gram-Charlier, and well-known parametric densities such as normal, skewed-t and Johnson. This paper aims to analyze whether models based on polynomial expansions outperform the parametric ones. We carry out the model performance comparison in two stages: first, with a backtesting analysis of VaR and ES; and second, using loss functions. Our backtesting results show that all distributions, except for normal ones, perform quite well in VaR and ES estimations. Regarding the loss function analysis, we conclude that polynomial expansions (specifically, the Cornish-Fisher one) usually outperform parametric densities in VaR estimation, but the latter (specifically, the Johnson density) slightly outperform the former in ES estimation; however, the gains of using one approach or the other are modest.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.