Abstract
Two-photon excitation provides high spatial resolution in three dimensions of the corresponding chemical or physical processes, allowing submicrometer structuring in stereolithography and three-dimensional (3D) microfabrication. While studying two-photon structuring applications, we observed an undescribed phenomenon in photochemistry that dictates reactivity of maleimide groups in two-photon mode. A low-absorbance transition formerly ignored in classical photochemistry has been found for maleimides. This transition was assigned to symmetry-breaking donor-acceptor complex formation, which revealed a formally forbidden pathway in [2+2] cycloaddition reactions of maleimide moieties. This synthetic pathway allowed for the creation of hydrogel materials under physiological conditions at low laser excitation energy (0.1 J/cm2 at 800 nm) without the use of photoinitiators, which makes it truly two-photon click chemistry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.