Abstract

Summary form only given. Two-photon excitation provides a means of activating chemical or physical processes with high spatial resolution in three dimensions and has enabled the development of 3D fluorescence imaging, 3D optical data storage, and 3D lithographic microfabrication. Each of these applications takes advantage of the fact that the two-photon absorption probability depends quadratically on intensity, and therefore under tight-focusing conditions, the absorption is confined at the focus to a volume of order /spl lambda//sup 3/, where /spl lambda/ is the laser wavelength. Any subsequent process, such as fluorescence or a photo-induced chemical reaction, is also localized in this small volume. For instance, two-photon excitation can initiate conventional reactions such as side-group deprotection, radical generation, and polymerization, through energy transfer or electron transfer. However, the efficiency of such processes depends critically on the strength of the chromophore's two-photon absorptivity. We have developed a wide array of chromophores which hold great promise for 3D optical data storage and 3D microfabrication. These materials are based on donor-/spl pi/-donor, donor-acceptor-donor, or acceptor-donor-acceptor structural motifs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.