Abstract

The authors demonstrate three-dimensional erasable bit optical data storage in a quantum-dot doped photopolymer under two-photon excitation by a near-infrared femtosecond pulsed laser beam. It is shown that the photorefractive polymer consisting of poly(vinyl carbazole), ethyl carbazole, 4-(diethylaminobenzylidene)-malononitrile, and CdS quantum dots exhibits the changes not only in refractive index but also in fluorescence. Such a photosensitivity provides a multimode readout mechanism. In particular, the use of S rich surface quantum dots not only allows the two-photon-induced bit optical data storage with greater contrast but also expands the margin between permanent and erasable recording thresholds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.