Abstract

This study explores the impact of different magnetic driving field waveforms on nanoparticle heating in magnetic hyperthermia. Our research, which shifts the usual focus from individual nanoparticle properties to interacting particle clusters, evidences that square waves induce more uniform and greater heating than sinusoidal waves. The sequential switching observed with sinusoidal waves, which additionally strongly depends on the alignment of the particle cluster with respect to the direction of the field, leads to less uniform heating within and among different clusters. In contrast, a square waveform leads to simultaneous particle switching, thereby homogenizing the heat and potentially mitigating hazardous hot spots. These findings reaffirm the potential advantages for magnetic hyperthermia treatments using non-harmonic field waveforms, offering more uniform heating and the possibility of reducing the applied field exposure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.