Abstract

A framework, which is a (possibly infinite) graph with a realization of its vertices in the plane, is called flexible if it can be continuously deformed while preserving the edge lengths. We focus on flexibility of frameworks in which 4-cycles form parallelograms. For the class of frameworks considered in this paper (allowing triangles), we prove that the following are equivalent: flexibility, infinitesimal flexibility, the existence of at least two classes of an equivalence relation based on 3- and 4-cycles and being a non-trivial subgraph of the Cartesian product of graphs. We study the algorithmic aspects and the rotationally symmetric version of the problem. The results are illustrated on frameworks obtained from tessellations by regular polygons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.