Abstract

The purpose of this paper is to study the effect of the numerical quadrature on the finite element approximation to the exact solution of elliptic equations with discontinuous coefficients. Due to low global regularity of the solution, it seems difficult to achieve optimal order of convergence with classical finite element methods [Z. Chen, J. Zou, Finite element methods and their convergence for elliptic and parabolic interface problems, Numer. Math. 79 (1998) 175–202]. We derive error estimates in finite element method with quadrature for elliptic interface problems in a two-dimensional convex polygonal domain. Optimal order error estimates in L 2 and H 1 norms are shown to hold even if the regularity of the solution is low on the whole domain. Finally, numerical experiment for two dimensional test problem is presented in support of our theoretical findings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.