Abstract
The purpose of this paper is to study the convergence of finite element approximation to the exact solution of general self-adjoint elliptic equations with discontinuous coefficients. Due to low global regularity of the solution, it is difficult to achieve optimal order of convergence with classical finite element methods [Numer. Math. 1998; 79:175–202]. In this paper, an isoparametric type of discretization is used to prove optimal order error estimates in L 2 and H 1 norms when the global regularity of the solution is low. The interface is assumed to be of arbitrary shape and is smooth for our purpose. Further, for the purpose of numerical computations, we discuss the effect of numerical quadrature on finite element solution, and the related optimal order estimates are also established.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have