Abstract

We derive a priori error estimates in the finite element method for nonselfadjoint elliptic and parabolic interface problems in a two-dimensional convex polygonal domain. Optimal H 1-norm and sub-optimal L 2-norm error estimates are obtained for elliptic interface problems. For parabolic interface problems, the continuous-time Galerkin method is analyzed and an optimal order error estimate in the L 2(0,T;H 1)-norm is established. Further, a discrete-in-time discontinuous Galerkin method is discussed and a related optimal error estimate is obtained. Keywords: Elliptic and parabolic interface problems, finite element method, spatially discrete scheme, discontinuous Galerkin method, error estimates Mathematics Subject Classification (1991): 65N15, 65N20

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.