Abstract

Fretting wear is a material damage in contact surfaces due to micro relative displacement between two bodies. It causes some unexpected results, such as loosening of fasteners or sticking in components supposed to move relative to each other. Since this micro motion of fretting wear is difficult to measure in experiments, finite element method (FEM) is widely used for investigating the evolution of contact variables and wear scars during fretting wear process. In most FEM simulations of fretting wear, coefficient of friction (CoF) is assumed to be constant in order to simplify the models. As measured in experiments, however, the evolution of CoF has a relation with the wear number of cycles, especially during the running-in stage. In this research, the effects of variable CoF are considered in both gross sliding and partial slip conditions of fretting wear. The wear scar and wear volume predicted by FEM models for constant and variable CoF cases are calculated. Results indicate that, in gross sliding condition, whether or not using a variable CoF has little effect on wear volume at the end of the steady state stage of fretting wear cycles. However, when considering partial slip or running-in stage of gross sliding conditions, FE models with variable CoF achieve predictions that are closer to experimental results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call