Abstract

This is the first study to develop an empirical formulation to predict fretting wear (volume removal) under frictional conditions for plane-strain line contacts as borne out by the finite element analysis (FEA). The contact is between a deformable half-cylinder rubbing against a deformable flat block. The FEA is guided by detailed physical conceptions, with results that subsequently lead to the methodical modeling of fretting wear. The materials in contact are first set to steel/steel, then to Alloy617/Alloy617, and finally to copper/copper. Various coefficients of friction (COFs) and the Archard Wear Model are applied to the interface. Initially, pure elastic conditions are investigated. The theoretical predictions for the wear volume at the end of the partial slip condition in unidirectional sliding contact agree very well with the FEA results. The empirical formulation for the initial gross slip distance is constructed, again revealing results that are in good agreement with those obtained from the FEA for different materials and for various scales. The Timoshenko beam theory and the tangential loading analysis of a half elastic space are used to approximate the deflection of the half-cylinder and the flat block, respectively. That theory supports well the empirical formulation, matching closely the corresponding FEA results. The empirical formulation of the wear volume for a general cycle under fretting motion is then established. The results are shown to be valid for different materials and various COFs when compared with the FEA results. Finally, plasticity is introduced to the model, shown to cause two phenomena, namely junction growth and larger tangential deformations. Wear is shown to either increase or decrease depending on the combined influences of these two phenomena.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call