Abstract

Degradation of fiber coupling efficiency, caused by atmospheric turbulence, seriously hinders the performance of free space optical (FSO) communication systems. Holographic modal wave-front sensor (HMWFS), noted for its fast detecting rates and insensitivity to beam scintillation, is creatively applied to FSO communication systems in this paper. We analyze the principle of HMWFS and the relationship between fiber coupling efficiency and Strehl rate in theory, then simulate wave-front aberrations detection and correction in FSO communication systems. Additionally, the impact on fiber coupling efficiency of the FSO communication systems before and after aberrations correction based on HMWFS is fully discussed. The results show that HMWFS cater for weak atmospheric turbulence with the root-mean-square (RMS) value of residual aberrations less than 0.04 lambda and the peak-to-valley (PV) value less than 0.25 lambda, while the fiber coupling efficiency is increased from nearly 30% to more than 70%. (C) 2014 Elsevier Ltd. All rights reserved.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call