Abstract

Pointing errors caused by the atmospheric turbulence will degrade the performance of free space optical (FSO) communication systems, especially the bit error rate (BER). In this paper, we innovatively analyze the relationship between BER and pointing errors by the probability density functions (PDFs) and intensity displacement in focal plane under the On-Off Keying (OOK) modulation conditions. The closed-loop experimental system is set up in laboratory, where the fast steering mirror (FSM) is real-time controlled by embedded controller with the parallel processing technology and the atmospheric turbulence is simulated by a turbulence simulation box. The results of repeated experiments show that the method of pointing errors correction we proposed is efficient under the conditions of atmospheric turbulence. By utilizing our method, the BER can decrease from nearly 10−3 to nearly or even below 10−9, thus improving the performance of FSO communication systems significantly.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call