Abstract
In this paper we consider the consistent partition problem in reverse convex and convex mixed-integer programming. In particular we will show that for the considered classes of convex functions, both integer and relaxed systems can be partitioned into two disjoint subsystems, each of which is consistent and defines an unbounded region. The polynomial time algorithm to generate the partition will be proposed and the algorithm for a maximal partition will also be provided.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have