Abstract

Disjunctive Programs can often be transcribed as reverse convex constrained problems with nondifferentiable constraints and unbounded feasible regions. We consider this general class of nonconvex programs, called Reverse Convex Programs (RCP), and show that under quite general conditions, the closure of the convex hull of the feasible region is polyhedral. This development is then pursued from a more constructive standpoint, in that, for certain special reverse convex sets, we specify a finite linear disjunction whose closed convex hull coincides with that of the special reverse convex set. When interpreted in the context of convexity/intersection cuts, this provides the capability of generating any (negative edge extension) facet cut. Although this characterization is more clarifying than computationally oriented, our development shows that if certain bounds are available, then convexity/intersection cuts can be strengthened relatively inexpensively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.