Abstract

In this paper we are concerned with the problem of unboundedness and existence of an optimal solution in reverse convex and concave integer optimization problems. In particular, we present necessary and sufficient conditions for existence of an upper bound for a convex objective function defined over the feasible region contained in \({\mathbb{Z}^n}\). The conditions for boundedness are provided in a form of an implementable algorithm, showing that for the considered class of functions, the integer programming problem is unbounded if and only if the associated continuous problem is unbounded. We also address the problem of boundedness in the global optimization problem of maximizing a convex function over a set of integers contained in a convex and unbounded region. It is shown in the paper that in both types of integer programming problems, the objective function is either unbounded from above, or it attains its maximum at a feasible integer point.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.