Abstract

Ore bodies incubating within fault zones are a common phenomenon in geological strata and pose a huge challenge for underground mining. To effectively exploit mineral resources, the layout of the mining roadway and the interaction between the roadway and geological fault must be considered. In this paper, a bonding fracture was formed on granite samples to simulate a closed fault, under which a circular hole was fabricated to simulate the roadway of the gold mine. We performed a biaxial compression test at a true-triaxial electrohydraulic servo testing system for granite samples with a combined fracture-hole structure. It is worth noting that the fracture inclination β and relative distance between fracture and hole L were taken into account. The digital image correlation (DIC) technique was used to observe the displacement and strain field evolution around the fracture-hole structure. Our results demonstrate that (1) the strength of the granite sample decreases with increasing bonding fracture dip angle β, and the displacement drops between the hanging wall and foot wall raised in both the horizontal and vertical displacement directions. Macroscopic cracks become dense, and the failure degree becomes severe around simulated fault areas. (2) With the increase in the distance L, the strength of the granite sample increases, the influence of the hole on the slip of the fracture plane is weakened, and the discontinuity of displacement becomes less obvious. (3) The maximum principal strain field quantitatively reveals the details of the crack initiation, propagation, and coalescence around the fracture-hole structure, and displacement nucleation is observed in the vertical displacement field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call