Abstract
A new experimental technique was developed to characterize the mechanical properties of LIGA (an acronym from German words for lithography, electroplating, and molding) materials. An advanced imaging capability, scanning electron microscopy (SEM), with an integrated loading stage allows the acquisition of in situ microstructural images at the micro scale during loading. The load is measured directly from a load cell, and the displacement field is calculated from the SEM images based on the digital image correlation (DIC) technique. The DIC technique is a full-field deformation measurement technique which obtains displacement fields by comparing random speckle patterns on the specimen surface before and after deformation. The random speckle patterns are typically generated by applying a thin layer of material with high contrast to a specimen surface. Alternatively, DIC can also be applied using the microstructural features of a surface as texture patterns for correlation. DIC technique is ideally suited to characterize the deformation field of MEMS structures without the need to generate a random speckle pattern, which can be very challenging on the micro and nanoscale. In this paper, the technique is experimentally demonstrated on a LIGA specimen. The digital images showing LIGA surface features acquired during the loading can serve as random patterns for the DIC method. Therefore, full-field displacement and strain can be obtained directly on the specimen and the errors incurred by the testing system can be eliminated.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.