Abstract
The objective of this paper is to explore both grid method and Digital Image Correlation (DIC) technique for microscale and discontinuous displacement measurements, such as those associated with crack tips. First, the principle of the grid method is revisited. The grid method and DIC technique are then applied to computer generated images to calculate the displacement field around crack tips. Finally, the grid method is applied to actual experimental images of fracture tests which are conducted inside a Scanning Electron Microscope (SEM) chamber. A new technique is developed to generate microscale pattern that is suitable for both grid method and DIC technique. The displacement fields calculated from grid method are compared with those from DIC technique to identify the strengths and weaknesses of each technique for the microscale and discontinuous displacement measurements. It has been determined that grid method can obtain data closer to the discontinuity than DIC; however, DIC produces smoother displacement fields at the far field. Using this new pattern generation technique, both grid method and DIC technique can be applied to the fracture test at the microscale to complement with each other to achieve the best experiment results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.