Abstract

As the main inorganic component of human hard tissue, hydroxyapatite (HAp) has attracted extensive interest in biomedical and clinical applications, especially for HAp nanoparticles. In this study, HAp nanorods with a controllable aspect ratio were successfully prepared using NH3·H2O and CO(NH2)2 as aspect ratio modifier by a high-gravity reactive precipitation in a rotating packed bed (RPB) combined with hydrothermal treatment. The influences of the molar ratio of NH3·H2O and CO(NH2)2 and the rotating speed on the average size and aspect ratio of HAp nanorods were systematically explored. The as-synthesized HAp nanorods were investigated with TEM, XRD, and FTIR. The results indicated that the average aspect ratio of HAp nanorods could be facilely controlled in the range 2.2–39. As compared to a traditional batch stirred tank reactor, the RPB reactor had HAp nanorods with a smaller particle width and a wider range of aspect ratio, and a much shorter reaction time from 20 min to 1 s. Further, the potential...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.