Abstract
Highly crystalline and reasonably uniform hydroxyapatite (HA) nanorods were prepared by polyvinylpyrrolidone (PVP) assisted hydrothermal synthesis which produces high aspect ratio (length/width) nanorods. The aspect ratio of the nanorods was higher in the presence of PVP and increased with increasing concentrations of PVP. X‐ray diffraction (XRD) analysis showed that the HA nanorods were of the hexagonal apatite phase. High resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED) patterns confirmed that the nanorods grew in the c‐axis direction (preferred orientation). The calculated lattice spacing was ~0.35 nm which is the c‐axis value of hexagonal HA. Morphological variations of pristine and PVP added HA were evaluated by field emission scanning electron microscopy (FESEM) and TEM, which revealed that the presence of PVP greatly increased the aspect ratio of the HA nanorods. The formation mechanism of the PVP assisted HA was studied and a possible reaction model was given. Cell viability analysis by in vitro studies showed encouraging results for the high aspect ratio nanorods and indicated a possibility for tuning the activity based on controlling the aspect ratio.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.