Abstract

A microporous and CaO partially stabilized zirconia (Ca-PSZ) coating covered with hydroxyapatite (HA) nanorods is fabricated on Zr substrate by a hybrid approach of micro-arc oxidation (MAO) and hydrothermal treatment (HT). The effect of P ions in HT solution on the density and morphology of HA was investigated; the hydrophilicity and apatite-forming ability of the Ca-PSZ coating with HA nanorods were also examined. High-density HA nanorods (with a mean diameter of 50nm and length of 450nm) grow on the Ca-PSZ coating after HT in a solution containing 0.002M β-glycerophosphate disodium (β-GP). However, only a few of coarse-grained HA crystallites grow in the MAOed pores after HT in distilled water or in an ammonia aqueous solution with an initial pH value equal to the solution containing 0.002M β-GP. P ions in the HT solution are thought to significantly promote the formation of HA nanorods. The Ca-PSZ coating covered with HA nanorods displays good hydrophilicity and excellent apatite-inducing ability, and the induced apatite prefers to nucleate on the basal-faceted surfaces of HA nanorods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call