Abstract

Abstract Highly-ordered Fe nanowires (NWs) were successfully electrodeposited in a laboratory made anodic aluminum oxide template with a diameter of 30 nm. The as prepared Fe NWs were used as a substrate to prepare core–shell Fe@Fe3O4 NWs after annealing and hydrogen reduction at high temperature. The phase transformation of the oxide shell of electrodeposited Fe NWs took the form Fe2O3 → α-Fe2O3 → Fe3O4. Transmission electron microscopy images revealed that the surface of Fe@Fe x−1O x NWs was smooth and orderly, and the oxide layer was dense and uniform. The magnetic analysis of Fe@Fe x−1 O x nanowires was carried out using a vibrating sample magnetometer. It was found that Fe@Fe3O4 nanowires manifested the characteristics of super-paramagnetism in the direction perpendicular to the nanowires due to smaller coercive force, and they can be suitable material for future biomedical applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call