Abstract

The aim of this paper is to demonstrate the usefulness, practical applicability, accuracy and reliability of Standard IEC 61400-27-1. The objective of this standard is to specify generic simulation models for the four main types of wind turbines, as well as procedures to validate them. Given that most of the works published and related to the validation of generic wind turbine models have applied a limited number of voltage dip tests to a single wind turbine, the present paper significantly widens the scope of these studies, conducting a total of 59 voltage dip field tests in 7 different wind turbines from 3 manufacturers. The Type 3 and Type 4 wind turbines, i.e., the doubly-fed and the full-scale converter wind turbines, respectively, are the two topologies analysed, since these comprise the vast majority of the market share for new wind turbines. The field measurements carried out on the actual wind turbines are compared to the simulation results of the corresponding IEC dynamic wind turbine models, and the IEC validation methodology is applied. Based on the results obtained, several comparative analyses are performed, and the reasons for differences in the accuracy of the behaviour of the wind turbine topologies considered are also analysed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.