Abstract

The generic wind turbine models developed in recent years by the International Electrotechnical Commission (IEC) and the Western Electricity Coordinated Council (WECC) are intended to meet the needs of public, standard, and relatively simple (small number of parameters and computational requirements) wind turbine and wind farm models used to conduct transient stability analysis. Moreover, the full-scale converter wind turbine technology referred to as Type 4 by IEC and WECC, is increasingly used in current power systems due to its control benefits. Hence, the development of this generic model has become a priority. This study presents the validation of two generic Type 4 wind turbine models, which have been developed in accordance with the IEC and WECC guidelines, respectively. Field data collected from a real wind turbine located in a Spanish wind farm was used to validate both generic Type 4 wind turbine models following the IEC validation guidelines. Ten different test cases are considered, varying not only the depth and duration of the faults but also the load of the wind turbine. The parameters of the models were kept constant for all the simulation cases, aiming to evaluate the accuracy of the models when facing different voltage dips.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.