Abstract

Resistive random access memory (RRAM)-based hardware accelerators are playing an important role in the implementation of in-memory computing (IMC) systems for artificial intelligence applications. The latter heavily rely on vector-matrix multiplication (VMM) operations that can be efficiently boosted by RRAM devices. However, the stochastic nature of the RRAM technology is still challenging real hardware implementations. To study the accuracy degradation of consecutive VMM operations, in this work we programed two RRAM subarrays composed of <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$8\times $ </tex-math></inline-formula> 8 one-transistor-one-resistor (1T1R) cells following two different distributions of conductive levels. We analyze their robustness against 1000 identical consecutive VMM operations and monitor the inherent devices’ nonidealities along the test. We finally quantize the accuracy loss of the operations in the digital domain and consider the trade-offs between linearly distributing the resistive states of the RRAM cells and their robustness against nonidealities for future implementation of IMC hardware systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.