Abstract
The time-fractional diffusion-wave equation is considered. The time-fractional diffusion equation is obtained from the standard diffusion equation by replacing the first-order time derivative with a fractional derivative of order α ∊ (0,2]. The fractional derivative is described in the Caputo sense. This paper presents the analytical solutions of the fractional diffusion equations by an Adomian decomposition method. By using initial conditions, the explicit solutions of the equations have been presented in the closed form and then their numerical solutions have been represented graphically. Four examples are presented to show the application of the present technique. The present method performs extremely well in terms of efficiency and simplicity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.