Abstract
We revisit the Cauchy problem for the time-fractional diffusion equation, which is obtained from the standard diffusion equation by replacing the first-order time derivative with a fractional derivative of order β∈(0,2]. By using the Fourier–Laplace transforms the fundamentals solutions (Green functions) are shown to be high transcendental functions of the Wright-type that can be interpreted as spatial probability density functions evolving in time with similarity properties. We provide a general representation of these functions in terms of Mellin–Barnes integrals useful for numerical computation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.