Abstract

The contact resistance between the bipolar plate (BPP) and the gas diffusion layer (GDL) is an important factor contributing to the power loss in proton exchange membrane (PEM) fuel cells. At present there is still not a well-developed method to estimate such contact resistance. This paper proposes two effective methods for estimating the contact resistance between the BPP and the GDL based on an experimental contact resistance–pressure constitutive relation. The constitutive relation was obtained by experimentally measuring the contact resistance between the GDL and a flat plate of the same material and processing conditions as the BPP under stated contact pressure. In the first method, which was a simplified prediction, the contact area and contact pressure between the BPP and the GDL were analyzed with a simple geometrical relation and the contact resistance was obtained by the contact resistance–pressure constitutive relation. In the second method, the contact area and contact pressure between the BPP and GDL were analyzed using FEM and the contact resistance was computed for each contact element according to the constitutive relation. The total contact resistance was then calculated by considering all contact elements in parallel. The influence of load distribution on contact resistance was also investigated. Good agreement was demonstrated between experimental results and predictions by both methods. The simplified prediction method provides an efficient approach to estimating the contact resistance in PEM fuel cells. The proposed methods for estimating the contact resistance can be useful in modeling and optimizing the assembly process to improve the performance of PEM fuel cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call