Abstract

Contact resistance between the bipolar plate (BPP) and the gas diffusion layer (GDL) plays a significant role on the power loss in a proton exchange membrane (PEM) fuel cell. There are two types of contact behavior at the interface of the BPP and GDL, which are the mechanical one and the electrical one. Furthermore, the electrical contact behavior is dependent on the mechanical one. Thus, prediction of the contact resistance is a coupled mechanical–electrical problem. The current FEM models for contact resistance estimation can only simulate the mechanical contact behavior and moreover they are based on the assumption that the contact surface is equipotential, which is not the case in a real BPP/GDL assembly due to the round corner and margin of the BPP. In this study, a mechanical–electrical FEM model was developed to predict the contact resistance between the BPP and GDL based on the experimental interfacial contact resistivity. At first, the interfacial contact resistivity was obtained by experimentally measuring the contact resistance between the GDL and a flat graphite plate of the same material and processing conditions as the BPP. Then, with the interfacial contact resistivity, the mechanical and electrical contact behaviors were defined and the potential distribution of the BPP/GDL assembly was analyzed using the mechanical–electrical FEM model. At last, the contact resistance was calculated according to the potential drop and the current of the contact surface. The numerical results were validated by comparing with those of the model reported previously. The influence of the round corner of the BPP on the contact resistance was also studied and it is found that there exists an optimal round corner that can minimize the contact resistance. This model is beneficial in understanding the mechanical and electrical contact behaviors between the BPP and GDL, and can be used to predict the contact resistance in a new BPP/GDL assembly.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call