Abstract
The recent increases in the record efficiency of CdTe thin-film solar cell technology largely benefited from enhancements in short circuit current densities (JSC) in the short-wavelength regions by reducing the thicknesses of CdS window layers. Here, we report that the JSC can be enhanced in both short and long wavelength regions by using CdSe as the window layer. Comparing to CdS, CdSe has a higher solubility in CdTe, resulting in stronger interdiffusion at the CdSe/CdTe interface and the formation of CdTe1−xSex alloys with high x values. Due to bowing effects, the CdTe1−xSex alloys exhibit narrower band gaps than CdTe, enhancing the JSC in the CdTe-based solar cells for long-wavelengths. We further report that the use of combined CdS/CdSe window layers can realize high open circuit voltages and maintain the JSC enhancements. Our results suggest a viable approach to improve the performance of CdTe thin-film solar cells.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have