Abstract

The collisionless trapped electron modes in the short wavelength region k⊥ρs>1 (SWTEMs) are studied with the gyrokinetic integral eigenmode equation in tokamak plasmas. Here, we present a systematic study of the correlation between the SWTEMs and short wavelength ion temperature gradient (SWITG) modes. The kθρs spectra of TEM have double humps in the short wavelength and long wavelength regions, respectively. The SWITG modes with trapped electron effects taking into account have broader kθρs spectra. Dependences of growth rate and real frequency of SWTEMs on the various parameters, such as ion temperature gradient (ηi), the temperature gradient of trapped electrons (ηe), toroidicity (εn), magnetic shear (ŝ), safety factor (q), and the ratio of temperature (Te/Ti), are investigated in detail. It is found that the SWTEMs propagate in the electron diamagnetic drift direction and require temperature gradient of trapped electrons ηe exceeding thresholds. Moreover, the ion temperature gradient has a strong stabilizing effect on the SWTEMs. The SWTEMs become stable in both regimes of toroidicity εn > 0.1 and magnetic shear ŝ>0.5 regardless of the fraction of trapped electrons. In addition, the properties of short wavelength ITG (SWITG) modes are discussed with different ratio of trapped electrons. It is found that trapped electrons of greater fraction have a stronger destabilizing effect on the SWTEM and SWITG modes. These results are significant for the electrons anomalous transport experiments in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.