Abstract
Electrocatalysts with appropriate electron coupling toward LiO2 intermediates can exhibit superior oxygen reduction/evolution reaction kinetics in Li-O2 batteries (LOBs). In this work, a charge redistribution strategy has been developed by constructing NiS/MoS2 heterostructure nanosheet self-assembled hollow microspheres with an internal electric field to regulate the interaction with LiO2 and then improve the electrochemical performance of LOBs. Density functional theory calculations and physicochemical characterizations reveal that the difference of work functions between NiS and MoS2 promotes the electron redistribution in heterointerface via built-in electrical field, leading to increased electron density of interfacial Ni atom, thereby enhancing its electron coupling toward LiO2 intermediates and promoting one-electron oxygen reduction/oxidation reaction kinetics. As a result, the NiS/MoS2-based LOBs exhibit evidently higher discharge capacity and much better cycling performance than the batteries using NiS and MoS2. This work provides a reliable charge redistribution strategy induced by build-in electric field to design efficient catalysts for LOBs.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have