Abstract

Hydrothermal liquefaction (HTL) is a cost-effective and environment-friendly technology for using biomass to produce bio-crude oil. The critical challenge of HTL is its complicated aqueous product containing high concentrations of organics and diverse toxicants. This paper reports the continuous anaerobic digestion of raw and zeolite-adsorbed Chlorella HTL wastewater using up-flow anaerobic sludge bed reactors. The bio-methane production capacity, total carbon distribution and microbial response were investigated. The anaerobic process was severely suppressed when more than 20% raw wastewater was fed; while it showed essentially improved performance till 60% pre-treated wastewater was added. Produced methane contained 17.3% of the total carbon in feedstock, which was comparable with the value (16.7%) when 25% of raw wastewater was added. The metagenomic analysis revealed distinct microbial community structures in different stages and feedstock shifts. The abundance of functional genes was consistent with anaerobic digester performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.