Abstract

The anaerobic treatment of raw domestic wastewater by a novel technology consisting of an Up-flow Anaerobic Sludge Bed (UASB) reactor combined with a completely mixed digester for the stabilisation of the UASB sludge was assessed. A pilotscale plant of the so-called UASB-Digester system was located at the municipal wastewater treatment facility of Santiago de Compostela (Northwest of Spain). The main aim of the Digester was to enhance the biodegradation of influent solids retained in the UASB reactor at low temperatures, then increasing its specific methanogenic activity. The sludge drawn from the middle zone of the UASB entered the upper zone of the Digester and then circulated from the bottom of the Digester to the UASB bottom. Circulating in an automated semi-continuous way, the flow of this sludge stream was selected in order to set a previously defined hydraulic retention time (HRT) (16-27 d) in the digester. The Digester temperature was set at an optimum value ranging from 25 to 35ºC. The steady state efficiency of the UASB system, at 6-8 h of HRT, 15-16ºC of temperature and 330-360 mg l-1 of influent total chemical oxygen demand (TCOD) was 79% of total suspended solids (TSS) removal, 52% of TCOD removal and 60% of biological oxygen demand (BOD5) removal. The hydrolysis of retained solids reached 85%, while excess sludge generation was only 7% of influent TCOD. A stable anaerobic (pre)treatment of diluted domestic wastewater was reached as the sludge concentration in the reactor remained mainly constant and the specific methanogenic activity showed a slight increase.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call