Abstract
The electrical resistance of 12Х18Н10Т stainless steel specimens was measured in the course of compression and heating under stepwise shock compression. A mathematical simulation of the obtained experimental data was conducted. The simulation allowed switching to specific values and reconstructing the volume–temperature dependence of the electrical resistivity of steel at high pressures of 25–65 GPa and temperatures of 350–950 K. Semi-empirical regularities were identified that permit the prediction of the total effect of a decrease in the specific electrical resistivity of 12Х18Н10Т steel upon compression and its increase upon heating. The outcomes of the electrical resistivity tests on shock-compressed and heated steel are evaluated in comparison with the existing literature data on similar experiments conducted under atmospheric pressure and high temperatures.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have