Abstract
Graphene is the thinnest 2-D material which can be regarded as a single layer of graphite. The unique electrical, mechanical and optical properties of graphene can be used in many technological applications. 2-D nanomaterials with semiconducting properties are of great interest since they can be applied in electronics industry. Pure graphene is a zerogap semiconductor or semimetal, since the electron states just cross the Fermi energy. However, the electronic properties of graphene can be tuned by doping boron or nitrogen atoms. Understanding the electronic properties in terms of density of states and band structure of doped graphene is of great relevance today. In our work, we have analyzed the electronic properties of boron and nitrogen doped graphene using Density Functional Theory (DFT). The stability and charge analysis of doped structures have been studied. The Local Density Approximation (LDA) calculations have been used to find the total energies of the structures. In addition to the electronics industry, doped graphene also has great potential to adsorb gas molecules. Therefore, we have analyzed the H2 molecule adsorption in pure, B-doped and N-doped graphene.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have