Abstract

There is a growing interest for patterning on curved or tilted surfaces using electron beam lithography. Computational proximity correction techniques are well established for flat surfaces and perpendicular exposure, but for curved and tilted surfaces adjustments are needed as the dose distribution is no longer cylindrically symmetric with respect to the surface normal. A graphical processing unit -accelerated 3D Monte Carlo simulation, based on first-principle scattering models, is used to simulate the asymmetric dose distribution. Based on that, an approximate adjustment is made to an existing high-performance proximity effect correction (PEC) algorithm aimed at the correct exposure of a pattern of nanowires on a 17° tilted surface. It was experimentally verified that using the adjusted PEC indeed leads to a more uniform exposure on tilted surfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.