Abstract

Electron-beam lithography (EBL) is a relevant technique to the nanoscience community as it enables the production of precise structures at the nanoscale. When writing features in a thick resist layer, dose insufficiency is typically encountered when resolution approaches the focal spot of the electron beam itself. We present a study of this phenomenon, a theory for its understanding and compensation, and a method for the assignment of the correct area dose for writing small features. Dose insufficiency originates from the proximity effect distributing energy in volumes of resist that are larger than intended. Based on a simple interpretation of the spread, a proximity effect correction (PEC) algorithm was established. Implementing this, we could realize high-quality nanostructures with direct-write 50 kV EBL on AR-P 6200 (CSAR 62) resist. The latter translates to quick and inexpensive exposures that offer good compatibility with further processes. • Easy interpretation for dose correction in electron-beam lithography. • Discrepancy in pattern definition and dose allocation resolved without software. • Novel combination of acceleration voltage and high sensitivity and contrast resist. • Instructional for users with systems affected by large forward scattering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.