Abstract
Dielectric films with nanometer thickness play a central role in the performances of field effect transistors (FETs). In this article, a new class of organic gate dielectric based on the electrochemical grafting of diazonium salts on metallic electrodes is investigated. The versatile diazonium salt strategy is a local and room-temperature process that provides robustness and performances. Moreover, this process produces ultrathin (4–8 nm) and smooth films. To prove their efficiency as gate dielectric, they were integrated in MoS2–FETs gate stacks. The devices display excellent switching behavior for reduced gate bias swing (down to 1 V) and suppressed hysteresis thanks to the highly hydrophobic nature of the fluorinated grafted film. Furthermore, the devices exhibit steep subthreshold slopes (as low as 110 mV/decade), demonstrating excellent gate coupling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.