Abstract

We have investigated charge generation pathways in efficient organic photovoltaic blends of the polymer donor D18 and the small-molecule acceptor Y6 using transient absorption and time-resolved fluorescence spectroscopies. We find that energy transfer from D18 to Y6 outcompetes electron transfer and is followed by exciton diffusion from regions of the disordered Y6 phase to Y6 aggregates before hole transfer to D18. Aggregation of Y6 molecules increases their ionization energy by ∼0.3 eV and provides a driving force for hole transfer from Y6 excitons and spontaneously generated charge pairs to D18. We observed ultrafast depolarization of the Y6 ground-state bleaching in <200 fs, which indicates delocalization of primary excitons in Y6 aggregates. This delocalization can explain the spontaneous generation of charge pairs in neat Y6 films and Y6-rich blends. Our results show that subtle aggregation control of the low-energy absorber can be used for balancing photocurrent generation with low voltage loss in photovoltaic blends.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.