Abstract
Existing computational studies of cochlear implants have demonstrated that the structural detail of threedimensional (3D) cochlear models exerts influence on the current spread within the cochlea. Nevertheless, the significance of including the microstructures inside the modiolar bone in a cochlear model is still unclear in the literature. We employed two different multi-compartment neuron models to simulate auditory nerve fibres, and compared response characteristics of the fibre population between a detailed and a simplified 3D cochlear model. Results showed that although the prediction of firing is dependent on the details of the neuron model, the responses of the fibre population to the electrical stimulus, especially the location of the initiation of action potential, varied between the detailed and the simplified models. Therefore, the inclusion of the modiolar microstructures in a cochlear model may be necessary for fully understanding the firing of auditory nerve fibres.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.