Abstract
The objective of this study is to analyze the uterine electromyography (uEMG) signals to study the progression of pregnancy under term condition (gestational age > 36 weeks) using EMD-based time-frequency features. uEMG signals are obtained from the multiple public datasets during two conditions, namely T1 (acquired < 26 gestational weeks) and T2 (acquired ≥ 26 gestational weeks). The considered signals are preprocessed. Empirical mode decomposition is applied to decompose the signals and time-frequency features, such as median frequency (MDF), mean frequency (MNF), peak frequency and peak magnitude, are extracted from each intrinsic mode functions and statistically analyzed. The results depict that the obtained time-frequency features are able to distinguish between T1 and T2 conditions. The extracted features, namely MNF and MDF, are observed to decrease from T1 to T2 conditions. These features are found to have higher effect size, confirming the better differentiation between T1 and T2 conditions. It appears that EMD-based time-frequency features can aid in studying the evolving changes in uterine contractions towards labor.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.